Development of Risk Based Performance Based Design for Super Tall Building in Indonesia

Indra Djati Sidi, Bambang Budiono, Eben K. Haezer

ICEEDM - 2019 PADANG, 26 – 27 SEPTEMBER 2019

SHARING THE CONSTRUCTION OF TOWER 1 AND TOWER 2 THAMRIN NINE PROJECT JAKARTA

THE THAMRIN 9 PROJECT JL. MH THAMRIN, JAKARTA

72 STORY 6 LEVEL OF BASEMENT 366 METER OF HEIGHT

TOPPING OF MARCH 2020

THE THAMRIN NINE **PROJECT, JAKARTA 72 STORY BUILDING 366 METER OF HEIGHT UNDER CONSTRUCTION ESTIMATED COMPLETION DATE: MARCH 2020**

THAMRIN 9 PROJECT

IN THE PROCESS OF CONSTRUCTION

72 STORY BUILDING 6 LEVEL OF BASEMENT 366 METER OF HEIGHT UNDER CONSTRUCTION

THE TALLEST BUILDING IN

SECTION OF TOWER 1 AND TOWER 2 THAMRIN NINE PROJEC

TOWER 2

The Original Design Concept

- AS A DUAL SYSTEM STRUCTURE AS REGULATED BY ASCE STANDARD (ASCE 7 – 2010) OR INDONESIAN STANDARD OF SNI 1726 - 2012
- MAXIMIZE THE SPACE, MINIMIZE THE COLUMN SIZE, RESULTING A RATHER DENSE REINFORCEMENT FOR CORE WALL AND COLUMN
- THE RESPONSE SPECTRA ANALYSIS

Cs minimum

🔺 Cs fundamental

Cs pakai / Cs design
 Cs maksimum / Cs maximum

 $V = Cs \times W$

V = BASE SHEAR W = SEISMIC MASS

BASE SHEAR V

 $V = C_S \times W$ V = base shear

S_S = seismic coeffient ; function of Importance factor fundamental period, spectral acceleration W = the weight of the structure

CONDITION OF BARS BEFORE PERFORMANCE BASED DESIGN

COLUMN AND CORE WALL REINFORCEMENT

CORE WALL

DIFFICULTY IN CASTING THE CONCRETE, LONGER CONSTRUCTION PERIOD, DELAY CONSTRUCTION SCHEDULE

FACING FINANCIAL PROBLEM !

MOVE TO PERFORMANCE BASED DESIGN

 FOR TOWER 1 WITH THE EXISTING SIZE OF COLUMN, CORE WALL, AND BEAM, REDESIGN THE REINFORCEMENT USING SEISMIC

$\begin{array}{c} \text{COEFFICIENT: } C_{s \ desisgn} \ \text{SMALLER THAN THE} \end{array}$

C_{s minimum}.

PREPARE THE INPUT GROUND MOTION IN TERMS OF RESPONSE
 SPECTRA AND SEVEN GROUND ACCERATION FOR SERVICE LEVEL
 EARTHQUAKE (SLE) AND MCE_R

MORE RIGOROUS ANALYSIS

RECORDS FROM SITE SPECIFIC RUN FOR NON LINEAR TIME RESPONSE ANALYSIS (SSRA), HISTORY ANALYSIS, 7 FOR SLE AND MCER

- FOR SLE THE STRUCTURE MEMBER SHOULD **BE IN THE ELASTIC CONDITION**
- •FOR THE MCER THE STRUCTURE MEMBER SHOULD BE IN LIFE SAFE (LS) CONDITION
- •THE DRIFT LESS THAN 2%
- **REQUIREMENT AFTER THE EARTHQUAKE** ALSO MEET THE RESIDUAL DRIFT
 - BASE SHEAR GREATER 0.85 BASE SHEAR FROM C_s minimum

PERFORMANCE LEVEL - TARGET

SLE RESPONSE SPECTRA (Wayan Sengara, 2019)

RESPONSE SPECTRA AT GROUND SURFACE

MCEr response spectra (Wayan Sengara, 2019)

Perform 3D Modelling

tructures Element Modelling:

No	Element	Modelling	Non-linear Characteristic	
1	Primary Beam	Line element	Flexural hinge rotation	
2	Secondary Beam	Line element	Elastic	
3	Column	Line element	PMM hinge rotation	
4			a. Stress-Strain of concrete	
	Shear Wall	Fiber Element	b. Stress-strain of steel	
			c. Shear stress-Strain of concrete	
		a. Fiber Element (Concrete)	a. Stress-Strain of concrete	
5	Link Beam	b. Bar Element (Diagonal bar)	b. Stress-strain of steel	
			c. Shear stress-strain of concrete	
	Belt-Truss & Outrigger			
6	a. Top & Bottom Chord	a. Line Element	a. Flexural hinge rotation	
	b. Diagonal Brace	b. Bar Element	b. Stress-strain of steel	

STRUCTURE MODELIN FOR TOWER 1 THAMRIN NINE PROJE 72 STORIES

THE RESULTS: OK !

REINFORCING BARS FOR CORE WALL BEFORE AND AFTER PERFORMANC BASED DESIGN

BEFORE PBD

AFTE	ER PBD

REINFORCING BARS FOR COLUMN BEFORE AND AFTER PERFORMANCE BASED DESIGN

RISK BASED MODELING

INDONESIAN CODE: GUIDE LINE FOR SEISMIC RESISTANT DESIGN FOR BUILDINGS: SNI 1726 – 2012 STATES THE LIFE TIME RISK EQUAL TO 0.01 FOR 50 YEARS DESIGN LIFE TIME

THE QUESTION: WHAT IS THE LEFE TIME RISK ACHIEVED WITH THE CURRENT DETERMINISTIC DESIGN PROCEDURE, FOR A SUPER TALL BUILDING !

TARGET RELIABILITY ASCE 7 - 2016

Table 1.3-2 Target Reliability (Conditional Probability of Failure) for Structural Stability Caused by Earthquake

Conditional Probability of Failure Caused by the MCE_R Bisk Category Shaking Hazard (%) I & II 10 III 5 IV 2.5

Risk Target American Petroleum Institute (API)

posure Category	P_{f}
L1	$4 \ge 10^{-4} = 1/2500$
L2	$1 \ge 10^{-3} = 1/1000$
L3	$2.5 \ge 10^{-3} = 1/400$

	Consequence Category				
Life Safety Category	C-1, High Consequence	C-2, Medium Consequence	C-3, Lo Conseque		
S-1 manned-nonevacuated	L-1 ^a	L-1 ^a	L-1 ^a		
S-2 manned-evacuated	L-1	L-2	L-2		
S-3 unmanned	L-1	L-2	L-3		

^a Manned-nonevacuated platforms are presently not applicable to the U.S. GoM waters platforms are normally evacuated ahead of hurricane events. The metocean design crite Section 5 have not been verified as adequate for manned-nonevacuated in the U.S. GoM. How the winter storm, sudden hurricane, and earthquake criteria for the U.S. GoM have been verifi adequate for the manned-nonevacuated situation occurring during those events when platforms U.S. GoM waters are not normally evacuated.

FOR A SUPER TALL BUILDING

- THERE IS A NEED TO EVALUATE THE RELIABILITY OF THE STRUCTURE AGAINST EARTHQUAKE HAZARD, EXPLICITLY.
- THE STRUCTURE DESIGNED USING Cs minimum WILL TEND TO PRODUCE A VERY CONSERVATIVE DENSED REINFORCEMENT, IT IS SUGGESTED TO USE A SMALLER Cs .
- RELIABILITY ANALYSIS WILL SHOW WEATHER THE ASSUMPTION OF USING SMALLER Cs IS CORRECT OR NOT.
- PERFORMANCE BASED DESIGN AND RISK BASED DESIGN

VARIATION IN COMPRESSIVE STRENGTH OF CONCRETE, TENSILE STRENGTH OF STEEL, AND VARIATION IN FORMULAE USED IN THE ANALYSIS

Histogram OF Compressive Strength of Concrete

Histogram of Tensile Strength of Steel

VARIATION IN SHEAR CAPACITY, BETWEEN PREDICTED AND OBSERVED VALUES

Capacity Variation of Tower 1, Thamrin Nine Project Due to Different Source of Time History (Sesudah Patrisia 2017)

No	Earthquak Record	PGA (g)	Scale	Scaled PGA (g)
1	Loma Prieta	0.4	1.2	0.48
2	Imperial Valley	0.39	1.2	0.468
3	Northridge	0.4	1.05	0.42
4	Chi Chi	0.39	1.31	0.511
5	Kobe	0.43	1.7	0.731
6	Mammoth Lakes	0.42	1.375	0.578
7	Morgan Hill	0.42	2	0.84
8	MYG 013	0.216	5.1	1.104
9	TCU 015	0.187	2.76	0.517
10	TCU 089	0.181	2.75	0.498
11	TCU 120	0.157	1.75	0.275
12	ABY	0.205	3	0.615
13	TAP035	0.241	2.55	0.614
14	Padang	0.272	3	0.816

AKURASI FUNGSI ATENUASI TERHADAP DATA PENGUKURAN

FROM 1964 – 2017, 440 ATENUATION FUNCTION WERE INTRODUCED

PROBABILITY OF FAILURE OR RISK

- FAILURE = IF EARTHQUAKE ACCELERATION IS GREATER THAN DESIGN ACCELERATION (OR CAPACITY ACCELERATION OF A BUILDING), THIS STATEMENT IS GIVEN BY ANNUAL HAZARD FOR A CERTAIN REGION OBTAINED FROM PSHA
- SINCE THE CAPACITY IS RANDOM VARIABLE, WE HAVE TO INTEGRATE FOR ALL THE POSSIBLE CAPACITIES.

RISK FORMULATION

$$P_{F} = T \times \int P(Y > y | r) \frac{1}{\sqrt{2\pi}\beta r} \exp \left\{ -\frac{1}{2} \left[\frac{\ln r - \ln \mu + 0.5 \ln(1 + \Omega_{p}^{2})}{\beta} \right]^{2} \right\}$$

ANNUAL HAZARD CURVE
FROM PSHA FOR A CERTAIN
LOCATION
$$CAPACITY OF A BUILDING OR
FRAGILITY FUNTION$$

HAZARD CURVE OF JAKARTA RESULT OF PSHA

UNCERTAINTY IN STRUCTURE CAPACITY

ESISTANT

$$\Omega_{\rm R}^2 = \Omega_p^2 + \Omega_{\rm D}^2 + \Omega_{\rm S}^2 + \Omega_{\rm M}^2$$

ECORD TO RECORD VARIATION

LIMITED DATA CORRECTION

STRUCTURE IDEALIZATION

$$\beta = \sqrt{\ln(1 + \Omega_R^2)} : \text{combined}$$
variability

Non-Linear Time History Analysis

There are 2 sets of time history load which will be used :1. 7 time history load from outside Indonesia2. 7 time history load that are generated in Jakarta

i. Imperial Valley-1940 El

Centro

ii.Loma Prieta-1989

iii.Chi-Chi-1999

iv.Kobe-1995

v.Northridge-1994

vi.Mammoth Lakes

vii.Morgan Hill

i. Benioff-TCU120 ii.Benioff-TCU136 iii.Megathrust-212V5 iv.Megathrust-TCU089 v.Megathrust-MYG013 vi.Shallow Background ABY vii.Shallow Crustal MEL

Nonlinear Parameter of Elements

- Moment-rotation is integrated of moment-curvature along the plastic zone length (Lp) (assumed Lp = 0.5 x Element Depth)
- Moment-rotation of columns depends on the axial force subjected to column
- Acceptance criteria refer to ASCE 41-13

Table 1. Life Time Risk of Several Building with Outrigger and Belt TrussDesigned with Cs Smaller than Cs minimum Required by Indonesian Code

No.	A	В	(sec)	C_{s min} Indonesian Code	C _{s design}	C _{s design} / C _{s minimum}	Life Time Risk	Reference
1	60	2	5.6	0.0252	0.0172	0.68	5.5 x 10 ⁻⁴	1
2	80	2	7.8	0.0332	0.0183	0.55	1.1 x 10 ⁻²	4
3	60	2	6.4	0.0252	0.0169	0.67	4.2 x 10 ⁻⁴	3
4	90	2	8.04	0.0315	0.0155	0.50	2.7 x 10 ⁻²	5

A = number of story

B = number of outrigger and belt truss

T = fundamental period of the structure

RISK OF TOWER 1 TH, T = 50 YEARS: 0.9×10^{-2}

OR THE ANNUAL RISK:

$1.8 \times 10^{-4} = 2 \times 10^{-4}$

OR EQUIVALENT TO HAVE A PROBABILITY OF GETTING A RED BALL FROM A BOX CONTAINING 2 RED BALLS DAN 9998 WHITE BALLS,

TOTAL = 10000 BALLS

AND THE STRUCTURE PERFORMANCE = LIFE SAFE

OR ANNUAL RISK = 0.74×10^{-4} $\Gamma = 50 \text{ YEARS:}$ 0.37×10^{-2}

Ì

)

)

CONCLUSION (1)

- THE PERFORMANCE BASED DESIGN HAS BEEN APPLIED TO TOWER 1 AND TOWER 2 TO IMPROVE CONSTRUCTABILITY OF THE STRUCTURE
- THE USE OF C_{s design} SMALLER THAN THE C_{s minimum} MEET THE REQUIREMENT OF ASCE OR SNI CODE. THE POTENTIAL OF THIS ASSUMPTION MAY BE STUDIED FUTHER MORE.
- PBD GIVES MORE REASONABLE REINFORCEMENTS WITHOUT SACRIFICING SAFETY AND RELIABILITY, AND FINALLY SAFE MONEY

CONCLUSION (2)

- A SIMPLE RELIABILITY MODEL HAS BEEN DERIVED BASED ON TOTAL PROBABLITY THEOREM, e.g., BY COMBINING ANNUAL HAZARD FROM
 PSHA AND THE FRAGILITY FUNCTION R THROUGH RISK INTEGRAL PROSEDURE
- STATISTICS OF CAPACITY **R** ARE OBTAINED BY PUSHING THE STRUCRURE UNTIL REACHING COLLAPSE STATE FOR A CERTAIN HISTORICAL RECORD, e.g., BY PERFORMING NON LINEAR INCEREMENTAL TIME HISTORY ANALYSIS.
- COEFFICIENT OF VARIATION OF **R** VARIES FROM 0. 12 0.65

CONCLUSION (3)

- THE CAPACITY OF A SUPER TALL BUILDING AGAINST EARTQUAKE HAZARD DEPEND ON THE LINK BEAM IN THE CORE WALL AS A DISSIPATOR ELEMENTS.
- LIFE TIME RISK OF THE BUILDING IS LESS THEN **10**⁻², THE RELIABILITY IS DOMINATED BY THE VARIABILITY OF RECORD TO RECORD VARIATION.
- TARGET RELIABILITY EQUAL TO 10^{-2}
- THE OUTRIGGER AND BELT TRUSS ARE DESIGNED TO REMAIN IN ELASTIC STATE, THE COMPONEMT PROBABILITY OF FAILURE IS VERY SMALL.

THAMRIN 9 PROJECT

IN THE PROCESS OF CONSTRUCTION

THE BELT TRUSS AT 35th floor

THANK YOU